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Operads have been around for quite some time, back to May in the 70s
Originally meant to capture some of the computational complexities of different
associative and unital algebraic operations, Operads have found a home in a
multitude of algebraic contexts, such as commutative ring theory, lie theory etc.
Classicaly, Operads are defined as a sequence of O(n) of "n-ary” operations,
sets which are meant to act on some category. These Operads are symmetric
sequences, i.e. Functors O € € where Fin is the disconnected category of
finite sets and bijections. Any symmetric sequence gives rise to an endofunctor

7(X) = [[(O(n) x5, X™)

which the authors call an ”analytic functor” due to it’s resemblance to a power
series.

An operad is a symmetric sequence with a notion of composition (of the
n-ary operations) which is associative and unital. When O is an operad, the
associated endofunctor takes the form of a monad, a special endofunctor with a
unit and a multiplication.

In both settings, we can consider algebras over operads, defined as maps
O(n) x A™ — A and algebras over a monad, maps T(A) — A. In the case
where the target category € = Get the algebras of an operad and it’s associated
monad can be recovered from one another

However, when we are working with space, this equivalence fails. The point
of the presented paper is to re-establish operads in the context of higher category
theory in order to recover this algebra equivalence. This is achieved by defining
analytic functors over slice categories of spaces, and restating the equivalence
as a monadic adjunction.

Fr: AnEnd(I)SAnMnd(I) : U

This is built off the work of Weber, who described 1-Operads as 2-Polnomial
Monads.



The strategy is basically defined by the order of the sections:

In section 2 we define a polynomial functor. The main result of section
one is a characterization of polynomial functors

Theorem 2.2.3)
1)F is poly
2)F is accessible and preserves weakly contractible colimits
3) F has a local right adjoint.

in terms of weakly contractible limits, which will be used to define analytic
functors. We establish a two equivalent categories

POLY = POLYFUN

of polynomial functors and the relevant morphisms, the cartesian natural trans-
formations, that will be used as the context for the rest of the theorems

In section 3 we specify even further to analytic functors and prove a char-
acterization of them as polynomial functors with a middle map having finite
fibers. This class of polynomial functors is classified by an space iFin, and we
will see that analytic functors can be rebranded as functors with a cartesian
morphism over a specific analytic functor E;, who’s components are iFin.

1 E = B J
[ L]

We finish this section with a description of a specific set of analytic functors,
the dendroidal trees, and find an equivelance between the category of analytic
endofunctors and segal presheaves on trees.

AnFun = yseg(Qint)

Section 4 begins with a bar-cobar adjunction

Mapalgp((C) (QA? C) = Mapcoalgp((C) (A7 BC)

for algebras and co-algebras on oo-endofunctors, which is used to define the
notion of a free monad on an endofunctor via another (monadic) adjuncton)

Fr: €5 algp(€)

This adjunction induces a free monad P and we show that the algebras of a
free monad are equivalent to the algebras of the endofunctors P.

algp(€) = algp(€)



And when restricted to the analytic endofunctors, and (free) analytic monads
we get the higher analog of the algebraic equivalence we are looking for, namely
a monadic adjunction

Fr: AnEnd(I)SAnMnd(I) : U

And the monadicity of the adjunction implies the equivalence of categories:

AnMnd(I) 2 algyopr(AnEnd(I))

The only thing left to do is to actually describe describe co-operads as ana-
lytic monads, which is precisely the goal of the 5th section. In which we show
that the category of analytic monads is equivalent to the category of dendroidal

segal spaces
AnMnd = Pyeq ()

(which are an accepted model of oco-operads i.e. are equivalent to symmetric
sequences of topological spaces as defined in Lurie HA)

Alright so that’s the game plan let’s get started.
Disclosure

First and formost, we are working in some etherial category of spaces which
they denote

S = ”Category of spaces”

I assume this is some ”nice” category of topological spaces, or maybe oco-
groupoids. The real necessity is that it’s an LCcC (i.e. with an internal hom)
who’s slices form oo-Topoi

Second, there is a category of co-categories which follows Luries definition
as some ”scaled nerve of the simplicial category of fibrant marked simplicial sets
Catoo = N*¢(AT°)



Section 2: Polynomial Functors
Recall in an LCcC we have the dependent sum and product defined as

HAf8/J—8/I4f.
Definition.

A Polynomial functor P : S/J — S/I can be factored as P = tip.s* where
I£ELBBL
Proposition.
Polies Compose

Definition.

A small category is weakly contractible if it’s geometric realization |C] is
contractible

Theorem.

Let F: S/I — S/J
1)F is poly
2)F is accessible F preserves weakly contractible limits
3)F is a local right adjoint (F/, : (S/I)/g — (S/J)/(Fg) is a right adjoint)

The second two are a ”local adjoint theorem” (following from the adjoint
theorem accessible + preserves limits = right adjoint) and (1) <= (3) follows
from Beck - Chevellay equivalences.

Definition.

PolyFun(I,J) = poly functors, cartesian natural transformations

The justification of this is 2-fold, first the Beck - Chevellay tranformations
behave really well in the cartesian context, and this yeilds us a lemma

Lemma.

if n: F — P cartesian, then F is a poly

The second justification is in the general construction of polynomial functors
over varying 1,J.

Definition.

5q°°l9% (Cat o, )'="*Y = PolyFun



S/T —L— 8/

TN

S/ -2 8y

Of course, this sort of definition is rather formal, although really synthetic
so it should be the "right one”, but to work with polyfunctors we want a more

diagrammatic definition

Definition.

let Il = @ < o — @ — o define

POLY = Fun(AYP S) xg Fun(Al, )¢ x g Fun(Al,S) < Fun(IL, S)

so a map in POLY looks like

I EI_ B J
I

and we get the theorem
Theorem.

POLY = PolyFun

by the way, this relies on the usage of cartesian natural transformations
because this equivalence is proved ”fiber wise” (fibers over dom and codom), we
can do this because this fibration is a ”cartesian fibration”

Finally, we will make use of this theorem later:
Theorem.

For P € PolyFun Polyfun/p is an co-topos.



Section 3: Analytic Functors
Definition.

A sifted category is a small category who’s diagonal preserves limits (i.e
Lim(FoA: K —-®)=Lim(F: KxK—2)
in 1-categories this is the statement that finite products commute with limits.

Definition.

An Analytic functor F : S/I — S/J preserves sifted colimits and weakly
contractible limits.

The fact that accessible implies sifted gives us AnFun — PolyFun. We
have a better characterization of analytic functors:
Theorem.

FIEELBS
analytic <= p has finite fibers

We can use this characterization to classify analytic by a single analytic
functor.

Definition.

F A ”"bounded local class of morphisms” comes with a classifying map Uy —
Uz. Such that if

E—L>B
l ; l , then p € F
Ur — Ur
Let F: * <~ Ur — Uy — * and PolyFuny = {P € Polyfun|p € F}
Lemma.
Polyfunrz = U(Polyfun/F)
So specifically, we find the classifier for maps with finite fibers i Fin, — iFin

and let
E:x <« 1Fin, = iFin — %

Then
Corollary.
AnFun = PolyFun/E

So in particual, AnFun is an oco-topos, but in addition, we can write an
analytic functor as:



I

Finally, we can actually describe analytic functors in terms of trees, this lays
the groundwork for the future theorem equating analytic monads to dendriodal
segal spaces.

Definition.

A tree is an analytic functor A & M 5 N LA satifying certain properties.
The category of trees is Q;n — AnFun

I leave this to David, but essentially A are the edges, N are the nodes and
M are pairs of edges and node that say e is going into v”.

In this case the trivial tree is
x40 —=0—
And the n-Corolla is
n+ln—-x—>n+1

These are the elemetary trees Q. < Q;ns
The inclusion induces a functor on the presheaf categories &2 () — Z2(Qint)
the image of which are called the segal presheafs

<@(Qel) — @seg(Qint) g gZ(ant)
Finally, the yoneda embedding on AnFun yeilds an equivelence of categories

AnFun = Py (Qint)



Section 4: Lambek Algebras and Free Monads This section begins
with a bar-cobar construction who’s resulting adjunction will be used to con-
struct free monads from an endofunctor and equate the algebras on either.

Definition.

For an endofunctor P : € — € A lambek P-(co)algebra is a pair (A,a), (resp.
(C,c)) such that a : PA — A (resp. ¢: C — PC).

These both have their respective categories algp(€) and coalgp(€)

For an endofunctor P that preserves finite limits(remember Polies do this),
from a P-coalgebra ¢ : C' — PC' we can consider

QC = colim(C — PC — P*C — ...)

and this comes with a canonical equivalence QC — P(QC) with inverse u :
P(QC) — QC and so (2C,u) € algp(T).

We get a functor Q : coalgp(€) — algp(€) and dually we can construct a
functor B : algp(€) — coalgp(€). These are the bar/cobar.

Theorem.

Mapalgp(@) (ch A) = Mapcoalgp(@) (Ca BA)

We are now ready to construct the free monad on an endofunctor:

Proposition.
Let Up : algp(€) — € the underlying functor then U has a left adjoint
F’I”p - Up

and this adjunction is monadic.

Now since Frp 4 Up we can induce a monad on ¢, P = Up o Frp and we
get the following equivalence

Proposition.

algp(€) = algp(€)

This is essentially the algebraic equivalence we are looking for, but we need
to specify to analytic endofunctors P : S/; — S/; and show that everything
restricts properly. Namely:



In 1-Categories: If
F:C—-DHG

is an adjunction n : Id — G o F' the unit, and € : F'o G — Id the counit, then
the composite T'= G o F' becomes a monad on C

(T,n:Id— T,GeF : T?> - T)
Moreover, for an object of d € D the map
Geg: GoFoG(d) =TG(d) — G(d)

gives a functor GT : D — algr(€). The adjunction is called monadic if this
functor is an equivalence

Theorem.
For P € AnEnd(I) the free monad Fr(P) = P is also analytic, and we have

a monadic adjunction

Fr: AnEnd(I)SAnMnd(I) : U

Interpreting as 1-categories, monadicity implies:
AnMnd(I) = algyopr(AnEnd(I))

i.e., that analytic monads are equivalent to free monad algebras on analytic
endofunctors. This generalizes the 1-categorical:

Operads determine and are determined by the algebra on their analytic end-
ofunctor.

That is, if we can show that analytic monads are actually models for oo-
operads:
Definition.

Let Q be the subcategory of AnMnd spanned by free monads on the analytic
endofunctor trees ;nt, A Dendroidal Segal Space is a presheaf on 2 who'’s
restriction along the inclusion 2;nt — € is a segal presheaf. Denote this presheaf
subcategory Pseq(2)

Theorem.

AnMnd =2 Psq4(Q)

The dendroidal segal spaces are an accepted model for oo-operads, they
have been shown to be equivelent to the concrete construction of co-operads as
symmetric sequences of spaces by Lurie.



