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Part 1: Intuitions and Definitions

Ologs

Cat =⇒ (Cat ↓ C) =⇒ sm(C)

Colimits / Coverings

Anisotropy / monoidial $

/ ⊕
Site / Ontological Generation



Part 2: sm : Cat → Cat, 2-categories

Cat as a category, sm,Fun : Cat → Cat

∆ : IdCat → Fun

colim : Fun(C)→ C

η : Id → ∆ ◦ colim as initial in Lfun,C



Part 3: Higher Categories: Simplicial sets, Python Ologs

Cat as a 2-category

Simplicial Sets

Functorality as Naturality

Pythonic Simplicial Sets

Face and Degeneracy as ontological expansions



Ologs

Ontological Log

An Ontological Log is a labeled category.

I.e. labeled objects and labeled morphisms

An ontology represents concepts and their relations via
category theory



Ontological Expansions

An ontology itself is a category of concepts

An ontology can also represent the subconcepts of a single
concept.

We want to obtain the ontologies describing single concepts.

This is formalized by an ontological expansion
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Ontological Expansions

The Naive guess is a functor O : C→ Cat
(Doesn’t tell us how to relate subconcepts in O(c) to O(c’))

Another guess is that there is some ”universe” category D
with O : C→ (Cat ↓ D)
(Gives relations between subconcepts, but naturality is too
restrictive)

removing the naturality conditions the morphisms of (Cat ↓ D) are
collections of morphisms between images of small functors J,J’:

Submorphism

A submorphism F : J → J ′ is a set of maps between the images
of J and J’
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Ontological Expansions

This forms a category of small functors J : S → D and
submorphisms, sm(D).

This construction is actually functorial sm : Cat → Cat

Ontological Expansion

an Ontological Expansion is a functor O : C→ sm(D)
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Ontological Expansion

an Ontological Expansion is a functor O : C→ sm(D)



Colimits and Coverings

For a cocomplete category C, the colimit forms a functor
colim : (Cat ↓ C)→ C

The colimit also comes with a collection of ”canonical
morphisms” {ηs : J(s)→ colim(J)}
we want an analog for the colimit in sm(C), i.e. a functor
colim : sm(C)→ C with a collection {ηs : J(s)→ colim(J)}
the intuition behind the functorality of colim, is that we
should be able to deduce relations between concepts from the
relations of their ontological expansion
(i.e. colim(submorphism) = morphism)

in this case, for an ontological expansion O : C→ sm(D) we then
have a covering {ηs : O(c)(s)→ colim(O(c))}
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Colimits and Coverings, First OG assumption

If we make the further assumption that:

O : C→ sm(C) and colim(O(c)) = c

we get a covering {O(c)(s)→ c} of c by its expansion

The intuition behind these assertions is that an ontological
expansion O(c) actually describes c

This assertion is the first condition of an Ontological Generator
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Anisotropy and $

Ontological Expansion tells us how to construct ontologies
that describe a given concept

In general, there is more than one ontological expansion

For example, we can describe a cat by
O(cat) = macroscopic body parts, or
O’(cat) = cellular anatomy

Goal

To organize different expansions and how they relate
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Anisotropy and $

The idea is that these ontological expansion functors are
actually part of a parameterized functor OGs , which we will
call an ontological generator

The intuition is that different ontological expansions all describe
the objects they expand, but may be more costly
(cellular anatomy is much more data than macroscopic body parts)

We also want to relate two ontological expansions

So our proto-definition of an ontological generator is now a functor

OG : $→ sm(C)C
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Operations on Ontological Expansions:

recall that sm : Cat → Cat is a functor

given O : C→ sm(C), sm(O) : sm(C)→ sm(sm(C))

also colim : sm(sm(C))→ sm(C)

given two ontological expansions O,O ′ : C→ sm(C) we can create
a composable chain:

C
O→ sm(C)

sm(O′)→ sm(sm(C))
colim→ sm(C)

This composition yeilds the spiral product

O ′ O = colim ◦ sm(O ′) ◦ O
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Operations on Ontological Expansions:

O ′ O = colim ◦ sm(O ′) ◦ O

The intuition behind the spiral product is that we are aggregating
two ontological expansions into one big one:

First expand an object c to an ontology O(c)

Then expand the objects c’ of O(c) to an ontologies O’(c’)

Finally collect ontologies into one large on that ”looks like”⋃
c ′∈O(c)

O ′(c ′)

(careful, in general the spiral product isn’t just an ordinary union)
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Monoidial Category $, Second OG assumption

consider a (proto-)ontological generator OG : $→ sm(C)C

What we now want is a (non-abelian) monoidial product s ⊗ s ′ on
$ that helps us organize subsequent spiral products.
i.e. ⊗ satisfies the equation

OG (s ′ ⊗ s) = OG (s) OG (s ′)

In this case:
a) OG is closed under the spiral product
b) $ tells us how to compose ontological expansions in OG
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Site, Final OG assumption

Consider an OG : $→ sm(C)C satisfying colim(OGs(c)) = c

Let Cov = {OGs(c)→ c}s∈$,c∈C
The final assumption is that Cov makes C into a site

intuition

We want to actually measure data about the objects of C. The site
assumption allows us to formalize data in terms of sheaves
F : C→ D.

Moreover given an ontological expansion OGs(c), we can use the
sheaf condition to ”glue together” data from c ′ ∈ OGs(c) to c-data
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Definition: Ontological Generators

Let C be a small category whose sm(C) admits a colimit, and $ be
a small monoidial category with a terminal object.

Ontological Generator

An ontological generator is a functor OG : $→ sm(C)C such
that:
1)colim ◦ OG (s) = IdC, ∀s ∈ $
2)OG (s ′ ⊗ s) = OG (s ′) OG (s)
3)Cov = {OG (s)(c)→ c}s∈$,c∈C makes C into a site
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Part 2: sm : Cat → Cat and colim

The point of this section is to recast the colimit as an initial object
in some category

Cat as a category, sm, fun : Cat → Cat

∆ : IdCat → fun

colim : fun(C)→ C

η : Id → ∆ ◦ colim is initial in Lfun,C

Conjecture: η : Id → ∆ ◦ colim is initial in Lsm,C
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(Cat ↓ C)

The category of small categories is actually a category itself

The objects are small categories C,D

The morphisms are functors F : C→ D

From a small category C we can form the overcategory (Cat ↓ C):

objects are functors J : S → C

morphisms are pairs (P : S → S ′, φ : J → J ′ ◦ P)

P is a functor and φ a natural transformation as in the diagram:

S S ′

C

P

J

φ

J′



(Cat ↓ C)

The category of small categories is actually a category itself

The objects are small categories C,D

The morphisms are functors F : C→ D

From a small category C we can form the overcategory (Cat ↓ C):

objects are functors J : S → C

morphisms are pairs (P : S → S ′, φ : J → J ′ ◦ P)

P is a functor and φ a natural transformation as in the diagram:

S S ′

C

P

J

φ

J′



(Cat ↓ C)

The category of small categories is actually a category itself

The objects are small categories C,D

The morphisms are functors F : C→ D

From a small category C we can form the overcategory (Cat ↓ C):

objects are functors J : S → C

morphisms are pairs (P : S → S ′, φ : J → J ′ ◦ P)

P is a functor and φ a natural transformation as in the diagram:

S S ′

C

P

J

φ

J′



(Cat ↓ C)

The category of small categories is actually a category itself

The objects are small categories C,D

The morphisms are functors F : C→ D

From a small category C we can form the overcategory (Cat ↓ C):

objects are functors J : S → C

morphisms are pairs (P : S → S ′, φ : J → J ′ ◦ P)

P is a functor and φ a natural transformation as in the diagram:

S S ′

C

P

J

φ

J′



(Cat ↓ C)

The category of small categories is actually a category itself

The objects are small categories C,D

The morphisms are functors F : C→ D

From a small category C we can form the overcategory (Cat ↓ C):

objects are functors J : S → C

morphisms are pairs (P : S → S ′, φ : J → J ′ ◦ P)

P is a functor and φ a natural transformation as in the diagram:

S S ′

C

P

J

φ

J′



fun : Cat → Cat

Lets consider the functor fun : Cat → Cat

fun(C) = (Cat ↓ C)

fun(F : C→ D) : (Cat ↓ C)→ (Cat ↓ D)

That is, fun(F ) is a functor:

for J : S → C, fun(F )(J) = F ◦ J : S → D

for (P, φ : J → J ′ ◦ P), fun(F )(P, φ) = (P,F (φ))

fun(F)(
S S ′

C

P

J

φ

J′
) =

S S ′

D

P

F◦J

F (φ)

F◦J′
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∆ : Id → Fun

Let C be a small category and ∗ the terminal (one-point)
category

for X ∈ C, define the small functor ∆C(X ) : ∗ → C by

∆C(X )(∗) = X

this is actually a functor ∆C : C→ fun(C)

Consider the identity functor IdCat . Both fun and Id are
endofunctors of the category Cat

∆ is a natural transformation ∆ : IdCat → fun.
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Colimit as a natural transformation

Let L : fun(C)→ C a functor

for J : S → C, L(J) ∈ C

therefore ∆(L(J)) : ∗ → C ∈ fun(C)

hence ∆ ◦ L is an endofunctor of fun(C)

consider a natural transformation l : Idfun(C) → ∆ ◦ L

lJ : J → ∆C ◦ L(J) is then a morphism in fun(C)
i.e. a collection of maps lJ,s : J(s)→ L(J)

If C is cocomplete, colimit becomes a functor colim : fun(C)→ C
The canonical morphisms give us a natural η : Id → ∆ ◦ colim
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Lfun,C

let Lfun,C be the category such that:

objects are pairs (L, l : Idfun(C) → ∆C ◦ L)

morphisms are natural transformations φ : L→ L′ such that:

Idfun(C)

∆(L) ∆(L′)

l l ′

∆(φ)



Lfun,C

let Lfun,C be the category such that:

objects are pairs (L, l : Idfun(C) → ∆C ◦ L)

morphisms are natural transformations φ : L→ L′ such that:

Idfun(C)

∆(L) ∆(L′)

l l ′

∆(φ)



colim is initial in Lfun,C

Let’s step back: for a small functor J : S → C,
φJ : L(J)→ L′(J) is just a single morphism

the above diagram becomes

J

∆(L(J)) ∆(L′(J))

lJ l ′J

φJ

that is a map

φJ : L(J)→ L′(J) such that for all s ∈ S

J(s)
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lJ,s l ′J,s
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colim is initial in Lfun,C

If C is cocomplete, the universal property of the colimit is exactly
the statement that, for all L,J, there is a unique
φJ : colim(J)→ L(J) such that

J(s)

colim(J) L(J)

ηJ,s lJ,s

∆(φ)

that is, colim is initial in the category Lfun,C



Want: initial object in Lsm,C

Analogously, define Lsm,C for the endofunctor sm : Cat → Cat

the colimit we are looking for should be the initial object in
Lsm,C

Consider the faithful functor i : fun(C)→ sm(C):
i(J) = J, i(P, φ) = φ
that is, i forgets that φ is a natural transformation, and instead
regards it just as a collection of maps φs : J(s)→ J ′(P(s)), i.e. a
submorphism.
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Conjecture: i∗ is faithfull and essentially surjective

Lift i to a functor i∗ : Csm(C) → Cfun(C):

i∗(L)(J) = L ◦ i(J)

and further to a functor i∗ : Lsm,C → Lfun,C

i∗(` : Idsm(C) → ∆C ◦ L) = ¯̀ : Idsm(C) ◦ i → ∆C ◦ L ◦ i

= ¯̀ : Idfun(C) → ∆C ◦ L

Conjecture:

i∗ is faithful and essentially surjective.

if this is true then Lsm,C has an initial object, which will be the
colimit sm(C)→ C we are looking for, but this is still left to prove.
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Part 3: Towards higher ontologies; programmatic
representations

Cat and the 2-categorical secret

simplicial sets

higher ontologies

faces and degeneracies as ontological expansions

programming higher ontologies



Cat as a 2-category

The category of small categories is not just a category, but a
2-category

that is
objects are small categories C,D
morphisms are functors F : C→ D

2-morphisms are commutative diagrams:

C D

C D′

P

F F ′

Q

η

where η : Q ◦ F → F ′ ◦ P is a natural transformation
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Simplecies in Cat

The diagram

C D

C′ D′

P

F F ′

Q

η

Can actually be described entirely by a ”2-simplex”:

C

C′ D′

F
F ′◦P

η

Q



Simplecies in Cat

Following this line of reasoning, we can recast:

categories C as 0-simplecies

functors F : C→ D as 1-simplecies

commutative triangles up to natural transformation as
2-simplecies

Just as two 0-simplecies(categories) can have multiple
1-simplecies(functors) between them
3 functors (1-simplecies) can have multiple natural transformations
(2-simplecies) between them

C

C′ D′

F
H

η

G

C

C′ D′

F
H

µ

G



Simplecies in Cat

Following this line of reasoning, we can recast:

categories C as 0-simplecies

functors F : C→ D as 1-simplecies

commutative triangles up to natural transformation as
2-simplecies

Just as two 0-simplecies(categories) can have multiple
1-simplecies(functors) between them
3 functors (1-simplecies) can have multiple natural transformations
(2-simplecies) between them

C

C′ D′

F
H

η

G

C

C′ D′

F
H

µ

G



Simplecies in Cat

Following this line of reasoning, we can recast:

categories C as 0-simplecies

functors F : C→ D as 1-simplecies

commutative triangles up to natural transformation as
2-simplecies

Just as two 0-simplecies(categories) can have multiple
1-simplecies(functors) between them
3 functors (1-simplecies) can have multiple natural transformations
(2-simplecies) between them

C

C′ D′

F
H

η

G

C

C′ D′

F
H

µ

G



Simplecies in Cat

Following this line of reasoning, we can recast:

categories C as 0-simplecies

functors F : C→ D as 1-simplecies

commutative triangles up to natural transformation as
2-simplecies

Just as two 0-simplecies(categories) can have multiple
1-simplecies(functors) between them
3 functors (1-simplecies) can have multiple natural transformations
(2-simplecies) between them

C

C′ D′

F
H

η

G

C

C′ D′

F
H

µ

G



face and degeneracy

given a 2-simplex σ2 =

C

C′ D′

F
H

η

G

we can extract 3 bits of information, namely the faces:
face0(σ2) = H, face1(σ2) = F , face2(σ2) = G

On the other hand, given a 1-simplex: σ1 = F : C→ D, we can
get two ”degenerate” 2-simplecies:

d0(σ1) =

C

C D

IdC
F

Id

F

and d1(σ1) =

C

D D

F
F

Id

IdD
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face and degeneracy

if Σn is the set of n-simplecies, the faces and degeneracies are, in
general, functions:

Σ0 Σ1 Σ2

{d0
0}

{f 1
i }i=0,1

{d1
i }i=1,2

{f 2
i }i=0,1,2

of course, in more general situations, this chain continues as:

Σn−1 Σn Σn+1{f ni }0≤i≤n

{dn
i }0≤i≤n
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Simplicial Sets

Consider the category fin:

objects are the finite ordered sets [n] = (0, ..., n)

morphisms are increasing functions

There are two special types of increasing functions which will
represent primordial face and degeneracy maps:
f n
i : [n]→ [n + 1], f n

i (0, ..., i − 1, i , n) = (0, ..., i − 1,, i , ..., n)
dn
i : [n]→ [n − 1], dn

i (0, ..., i , i + 1, ...n) = (0, ..., (i , i + 1), ..., n)

Simplicial Set

A Simplicial Set is then a contravariant functor Σ : fin→ Set

A morphism of simplicial sets, is then just a natural transformation
η : Σ→ Σ′
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i.e. a natural transformation between 1-categories (as simplicial
sets) is actually just a functor.
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Benefits of simplicial sets: Higher Ontologies

There are two benefits to simplicial sets, the first is a path to
defining Higher Ontologies:

Ontologies represent concepts and relations between them

Simplicial Sets allow us to stage morphisms as concepts and
use 2-simplecies to find relations between morphisms, (or
relations between relations).

the naive definition of a higher ontology, then, should be a
simplicial set

The theory of Simplicial Sets is pretty well developed (almost as
well as category theory) and so sSet gives a great starting point for
capturing the intuition behind what a higher ontology should be
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The second benefit to using simplicial sets is that, a priori,
composition isn’t computed, but given

In a 1-category, for any two composable morphisms
f : a→ b, g : b → c there is always a 2-simplex:
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In an abstract simplicial set one need not have a 2-simplex for
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This allows us to get away with representing morphisms without
having to compute potentially infinite chains of maps

(for example if f : a→ a, f (n) is always defined)
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Pythonic simplecies

The face and degeneracy maps in a simplicial set can actually be
stored as attributes of a class in python: Simplex

simplex.level = n

simplex.faces = n-tuple of simplecies with level n-1

simplex.degeneracy = n-tuple of simplecies with level n+1

A simplicial set is then just a collection of simplex objects
containing its degeneracies and faces
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Pythonic Functors

A functor between simplicial sets is then just a function F between
the collections of simplex objects satisfying simple naturality
assertions:

code

for simplex in simpset:
assert F(simplex.faces) = F(simplex).faces
assert F(simplex.degeneracies) = F(simplex).degeneracies

you can view my working code at
https://github.com/nopounch/golog



Pythonic Functors

A functor between simplicial sets is then just a function F between
the collections of simplex objects satisfying simple naturality
assertions:

code

for simplex in simpset:
assert F(simplex.faces) = F(simplex).faces
assert F(simplex.degeneracies) = F(simplex).degeneracies

you can view my working code at
https://github.com/nopounch/golog



Pythonic Functors

A functor between simplicial sets is then just a function F between
the collections of simplex objects satisfying simple naturality
assertions:

code

for simplex in simpset:
assert F(simplex.faces) = F(simplex).faces
assert F(simplex.degeneracies) = F(simplex).degeneracies

you can view my working code at
https://github.com/nopounch/golog



Theoretical Goals: faces and degeneracies as ontological
expansions

The following is a work in progress:

The idea is to consider the collections of face maps and degeneracy
maps as small functors:

face : Σ→ sm(Σ)

degen : Σ→ sm(Σ)

i.e. facen : Σn → (Σn−1)n, degenn : Σn → (Σn+1)n

The functorality here isn’t apparent, and may necessitate working
with something close to but not exactly simplicial sets.
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The goal of programmatically representing ontologies is to actually
extract ologs from real world data:

Example 1: Extract ontologies from git repositories:
Objects are actual file structures, morphisms version updates

Example 2: Extract ontologies from code:
Objects are instanciated objects, morphisms are calls
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