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Cobi(n) is the symmetric monoidal category whose:
m Obs: n-1 dim closed manifolds M
m Mors: n dim Bordisms B:M—N
m Comp: BioBy= By ][y B1
Q=] 1s=0

A dual of an object X € € is an object X with morphisms:

evx : X®@X — 1and coevy : 1 - X @ X

Fully Dualizable

In Cobi(n) we have the duals:

evy : MIIM — () and coevy : ) = M@ M
[macaroni picture]

In (Vecty,®,1 = k) we have evy : V@ V — k by

ev(f,v)=17(v)

when V is finite dimensional we have coevy : k — V ® V by

n
coev(k) = Z kv, @ v'

We say that € is fully dualizable when all of it's objects have duals:

m Cobi(n) is fully dualizable
m Vecty is not, but Vect,fd is

Let © be fully dualizable and F € Fun®(D, €), then F factors
uniquely as
D¢



Classical TQFTs Reduction Arguement

m Let B: M — N be a bordism

m rewriteas B: ) — N[ M

m Thatis B: () — OB hence Z(B) : k — Z(0B)
Z : Coby(n) — Vect m Factor Bas M 21 B

m )(Bo]1B1) = a(B)ILITL

We have the commutative diagram:

A TQFT is a SMFunctor

by the above theorem, this reduces to

Z : Coby(n) — Vect 26)

k , Z(88B)
lZ(Bo)(X)Z(Bl) Z(evL)T
Z(8Bo) ® Z(9By) —— Z(3B) ® Z(L) ® Z(L)"

The fact that the essential image of Z must lie in the fully
dualizable objects will allow us to reduce the calculation of Z.

Allowing us to express Z(B) in terms of Z(By), Z(B1) and Z(ev;)

Classical Cobordism Hypotheses Reasons to Extend to (oo, n)-categories

COUpled W|th a C|aSSificati0n Of 0,1,2 manifolds, we get: Cob(n) should be an n_category:

ev, : Fun®(Coby (1), Vectfd) = Vectf? (as sets) m Classification of n>>2 manifolds is hard

m Covariance: Cobi(n) "Chooses” a time axis

A 1-dimensional TQFT is classified by Z(*)
and Cob(n) should be an (inf, n)-category

o o m We want to explicitly deal with diffeomorphism

Fun®(Coby(2), Vecti’) = k — FrbAlg m We want to consider TQFT variants such as

A 2-dim TQFT is classified by Z on: Z : Cob(n) — Chainy

S, a "pair of pants” ST]]S' — S and a "cap” S* — 0} i.e. we want to consider homotopy as well



Segal Spaces (inf, 1)-categories

for x,y € Xo let Map(x,y) = {x} ><>F§o X1 X)R;o v}

Recall: a simplicial set X is the nerve of a category iff the diagram .
define the homotopy category hX:

Xntn — Xm - Obs = Xo
l l is a pullback - Mors = mo(Map(x, y))
Xp — Xo f € Xy is invertible if [f] € hX is. Let Z C Xj be the invertibles.
Likewise a Simplicial Space X : A°P — Top is a Segal Space if 8o : Xo — X1 factors through dg : Xo — Z.
the above diagram is a homotopy pullback X, ~ X, ><)’_‘;0 Xn We say X is complete if &g is a weak equivalence.

An (o0, 1)-category is a complete segal space X

(00, n)-categories Bord, as (oo, 1)-category

Let PreCob) (n) = {(M — V x R, (ap < ... < ax)}

An n-fold simplicial space is a functor X : (A°P)" — Top. (with some extra conditions)

Let nTop = {X : (A°P)" — Top}. . :
by currying we get nTop = {X : A — (n —1)Top} [picture of transverse embedding]
PreCobY (n) has a natural topology making it a segal space, we

an n-fold simplicial space is a (oo, n)-category if: can complete it to an (o0, 1)-category Bords(n):

1) X satisfies the segal condition

2) Xo is essentially constant - Obs: n-1 closed manifolds
3) X are (oo, n — 1)-categories - Mors: n Bordisms
4) Yi = Xko,..0 is an (00, 1) — category - 2-Mors: Diffeomorphisms of Bordisms

- 3-Mors: isotopies of Diffeomorphisms



Adjoints

Let PreCob,‘(/l’m’kr(n) ={(M—= VxR, (a) <..< af(i),-gr} Let € be a 2-category. We say f 4 g if

(with some extra conditions) nildy — gofande:fog— Idy

[picture of multi-transverse embedding] (Acting like the units of an adjunction)

¢ has adjoints if all f has gy - f
PreCobY (n) has a natural topology making it an n-fold segal e &l &r

space, we can complete it to an (oo, n)-category Bord,: Let X be an (0o, n)—category n > 2, define hoX:
. -Obs = Xo
- Obs: Points -Mors = X10
- Mors: 1- Bordisms ~ 2-Mors — ’wo(Map(f,g))
- n-Mors: n-Bordisms X has adjoints for 1 morphisms if h, X has adjoints X
- (n+1)-Mors: Diffeomorphisms of Bordisms
- (n+1)-Mors: Isotopies has adjoints for k morphisms if Map(x,y) has adjoints for k-1
morphisms

Bord,, is fully dualizable (fake) Cobordism Hypothesis

We say a symmetric monoidal (oo, n)-category is fully dualizable if
it has duals, and adjoints for all k

Bord,, is fully dualizable
~ fd : . :
Thus Fun®(Bord,, &) ~ Fun®(Bord,, €) This leads us to the (fake) cobordism hypothesis:

Moreover, the duals realize Fun®(Bord,, €¢) as an oo-groupoid:
( m¢) group ev, : Fun®(Bord,, €) — ¢~

. /
a:Z—+Z where €™ is the core co-groupoid of a (0o, n)—category

ap : Z(M) = Z'(M) and oy : Z(M) — Z'(M)
ap:Z'(M)— Z'(M)

with oy = Oz,@,l



Framings O(n)-action

The real cobordism hypothesis is a lot weaker:
This version of the cobordism hypothesis is not very interesting,

ev, : Fun®(Bord™ ¢) — ¢~ namely it classifies TQFTs on manifolds with n-framings:

barely any manifolds have n-framings.
It requires that we have n-framings on the manifolds in Bord,,.

What's interesting is that it induces an O(n)-action on €™

Let M™ be a manifold, an n-framing on M is an isomorphism of - O(n) acts on n-framings of a manifold M
vector bundles - O(n) acts on Bord!"
Ty R"™™=R" - O(n) acts on Fun®(Bord!", ¢) ~ ¢~

Let Bord™ be the (0o, n) — category of bordisms with n-framings

(X, ¢)-Structures The (real) Cobordism Hypothesis

an n-framing is a specific case of an (X, ¢)-Structure. For x € X, let F, = {R" = (, orthonormal}. F, carries an O(n)
action by pre-composition, Let X =[], Fx be the
Let X be a topological space, with a rank n vector bundle { with associated principal O(n)-bundle of frames in X.
an inner product (v,w). An (X, ()-structure on a manifold M is:
m Amap f: M— X We then have the following equivalence:
m An isomorphism of vector bundles Fun®(Bord,(,X’O, ¢) = Homo(,,)(;(, )

Ty @RTM x> f*
M= ¢ Which is induced as follows:

Let Bord{“") be the (oo, n)-category of Bordisms with a Each % € X gives an (X, ¢)-structure on the point * (by pullback).
(X, ¢)-structure The restriction functor rest*®) induces the above equivalence



Sketch of the proof: Constructions Sketch of the proof: Extension

- Let (X, () m Let QX = Mapx(*, *), inductively define Q%X
- Write X = {(x,f) : f : R" — () m For x € X let S = {|v| =1} ¢ Q"‘lBordr(,)fol’Co)
: t:t ?2 z }Ei: Z?‘V\;)‘e(ff\(,‘)/’e‘/)xz (13»’twh)e ip(l)lfre bundle m For Z : Bord{**) — ¢, restrict to Z, : Bord,s)_("l’co) — ¢
- Let p: Xop — X the projection, then m define @ : X — Q1€ by &(x) = Zp(5%)

for a point (x,v) € Xo we can decompose S%* as

&R p(C
5x+ ¢ Sfx_
with this equivalence any dim < n manifold with an 0= S5 >0

(Xo, Co)-structure also carries an (X, ¢)-structure. Thus:
yeilding a composite of morphisms in Q"~1¢

Bord,(,)_((’l’@) s Bord,(,x’o H( o)
+ X,V

1 5 Ho(x,v) =71

non-degenerate morphisms Inductive ldea

“Let DS = {|v| < 1}, D% : ) — S Letting (X, () = (x,R")

Bord,f’ = Bord,(,* R")

N = Z(D%) : 1 — Hy(x,v) o H_(x,v)

nx witnesses H_(x, v) = Hy(x, v). we say that 7, is non-degerate
m Assume the General Cobordism Hypothesis for dimension n-1

Theorem 3.1.8

(X0,C0) m Let Z: Bord — &, Theorem 3.1.8 allows us to reduce to
Let Zy : Bord, "> — &, TFAE:

p Zy: Bordﬁinlil’@) — € and a family 7, : 1 — Zp(S" 1)
m Z: Bord,”y" — € extending Zo m |t follows from some highly technical details (p. 54-57) that
m families of non-degenerate n-morphisms {n, : 1 — Zo(S%)}x this reduces to a functor Z_ : Bord | — ¢

m This proves the Framed Cobordism Hypothesis in dimension n




General Cobordism Hypothesis

We will extend to the general cobordism hypothesis as follows:
Let (X, () as before, consider f : Y — X € Top/X, we have two
functors:

F(f) = Fun®(Bordy" "), €) and
G(f) = Mapo(n)(X xx Y, €)

restriction to the (Y, f*() structures on * gives us a natural

ar : F(f) = G(f)

ar is an equivalence when f : x — X
Both F, G send homotopy colimits to homotopy limits

all CW-complexes are generated by homotopy colimits of *

ar is always an equivalence, in particular ayg,



