$Cob₁(n)$

Extended Cobordism Hypothesis

A survey of an overview

Noah Chrein

December 10, 2019

 $Cob₁(n)$ is the symmetric monoidal category whose:

- Obs: n-1 dim closed manifolds M
- Mors: n dim Bordisms B:M->N
- Comp: $B_1 \circ B_0 = B_0 \coprod_N B_1$
- $\blacksquare \otimes = \blacksquare$, $1_{\otimes} = \emptyset$

A dual of an object $X \in \mathfrak{C}$ is an object \overline{X} with morphisms:

 $ev_X : \bar{X} \otimes X \to 1$ and $coev_X : 1 \to X \otimes \bar{X}$

Fully Dualizable

In $Cob₁(n)$ we have the duals:

Duals

ev $_M : \bar{M} \coprod M \to \emptyset$ and $coev_M : \emptyset \to M \otimes \bar{M}$ [macaroni picture]

In $(Vect_k, \otimes, 1 = k)$ we have $ev_V : \overline{V} \otimes V \rightarrow k$ by

$$
ev(f,v)=f(v)
$$

when V is finite dimensional we have $coev_V : k \to V \otimes \bar{V}$ by

$$
coev(k) = \sum^{n} kv_i \otimes v^i
$$

We say that C is fully dualizable when all of it's objects have duals:

- \Box $Cob₁(n)$ is fully dualizable
- Vect_k is not, but Vect^{fd} is

Let $\mathfrak D$ be fully dualizable and $F \in Fun^{\otimes}(\mathfrak D, \mathfrak C)$, then F factors uniquely as

$$
\mathfrak{D}\to \mathfrak{C}^{fd}\to \mathfrak{C}
$$

A TQFT is a SMFunctor

$$
Z: Cob_1(n)\rightarrow Vect_k
$$

by the above theorem, this reduces to

$$
Z:Cob1(n) \rightarrow Vectkfd
$$

The fact that the essential image of Z must lie in the fully dualizable objects will allow us to reduce the calculation of Z.

- Let $B : M \rightarrow N$ be a bordism
- rewrite as $B : \emptyset \to N \coprod \bar{M}$
- **■** That is $B: \emptyset \to \partial B$ hence $Z(B): k \to Z(\partial B)$
- Factor B as $M \stackrel{B_0}{\rightarrow} L \stackrel{B_0}{\rightarrow} N$
- $\partial (B_0 \coprod B_1) \cong \partial (B) \coprod \overline{L} \coprod L$

We have the commutative diagram:

$$
\begin{array}{ccc}\n k & \xrightarrow{Z(B)} & Z(\partial B) \\
\downarrow z(B_0) \otimes Z(B_1) & z(\text{ev}_L) \uparrow \\
Z(\partial B_0) \otimes Z(\partial B_1) & \xrightarrow{\sim} Z(\partial B) \otimes Z(L) \otimes Z(L) \wedge\n \end{array}
$$

Allowing us to express $Z(B)$ in terms of $Z(B_0), Z(B_1)$ and $Z(ev_L)$

Classical Cobordism Hypotheses

Reasons to Extend to (∞, n) -categories

Coupled with a classification of 0,1,2 manifolds, we get:

$$
ev_* : Fun^{\otimes}(Cob_1(1), Vect_k^{fd}) \cong Vect_k^{fd}
$$
 (as sets)

A 1-dimensional TQFT is classified by $Z(*)$

and

$$
\text{Fun}^{\otimes}(\text{Cob}_1(2),\text{Vect}_k^{\text{fd}}) \cong k-\text{FrbAlg}
$$

A 2-dim TQFT is classified by Z on:

$$
S^1, \ a \text{ ``pair of pants'' } S^1 \coprod S^1 \rightarrow S^1 \text{ and a ``cap'' } S^1 \rightarrow \emptyset
$$

Cob(n) should be an n-category:

- Classification of $n \geq 2$ manifolds is hard
- Covariance: $Cob₁(n)$ "Chooses" a time axis

 $Cob(n)$ should be an (inf, n)-category

- We want to explicitly deal with diffeomorphism
- We want to consider TQFT variants such as $Z: Cob(n)\rightarrow \mathfrak{Chain}_k$

i.e. we want to consider homotopy as well

Recall: a simplicial set X is the nerve of a category iff the diagram

Likewise a **Simplicial Space** $X : \Delta^{op} \to \mathfrak{Top}$ is a Segal Space if the above diagram is a **homotopy pullback** $X_{m+n} \simeq X_m \times^R_{X_0} X_n$ for $x, y \in X_0$ let $Map(x, y) = \{x\} \times_{X_0}^R X_1 \times_{X_0}^R \{y\}$

define the homotopy category hX :

- Obs =
$$
X_0
$$

- Mors = $\pi_0(Map(x, y))$

 $f \in X_1$ is invertible if $[f] \in hX$ is. Let $Z \subseteq X_1$ be the invertibles.

 $\delta_0: X_0 \to X_1$ factors through $\delta_0: X_0 \to Z$. We say X is complete if δ_0 is a weak equivalence.

An $(\infty, 1)$ -category is a complete segal space X

 (∞, n) -categories

Bord_n as $(\infty, 1)$ -category

An n-fold simplicial space is a functor $X : (\Delta^{op})^n \to \mathfrak{Top}$. Let $n\mathfrak{Top} = \{X : (\Delta^{op})^n \to \mathfrak{Top}\}.$ by currying we get $n\mathfrak{Top} = \{X : \Delta^{op} \to (n-1)\mathfrak{Top}\}\$

an n-fold simplicial space is a (∞, n) -category if: 1) X satisfies the segal condition 2) X_0 is essentially constant 3) X_k are $(\infty, n-1)$ -categories 4) $Y_k = X_{k,0,\dots,0}$ is an $(\infty,1)$ – category

Let $PreCob_k^V(n) = \{ (M \hookrightarrow V \times \mathbb{R}, (a_0 \leq ... \leq a_k) \}$ (with some extra conditions)

[picture of transverse embedding]

 $PreCob^V(n)$ has a natural topology making it a segal space, we can complete it to an $(\infty, 1)$ -category Bord₁(n):

- Obs: n-1 closed manifolds
- Mors: n Bordisms
- 2-Mors: Diffeomorphisms of Bordisms
- 3-Mors: isotopies of Diffeomorphisms

...

$Bord_n$

Adjoints

Let $\mathit{PreCob}^V_{k_1,...,k_r}(n) = \{(M \hookrightarrow V \times \mathbb{R}^r, (a_0^i \leq ... \leq a_{k_i}^i)_{i \leq r}\}$ (with some extra conditions)

[picture of multi-transverse embedding]

 $PreCob_{\bullet}^{V}(n)$ has a natural topology making it an n-fold segal space, we can complete it to an (∞, n) -category Bord_n:

- Obs: Points
- Mors: 1- Bordisms
- ...

...

- n-Mors: n-Bordisms
- (n+1)-Mors: Diffeomorphisms of Bordisms
- (n+1)-Mors: Isotopies

Let $\mathfrak C$ be a 2-category. We say $f \dashv g$ if

 η : $\mathsf{Id}_X \to \mathsf{g} \circ \mathsf{f}$ and ϵ : $\mathsf{f} \circ \mathsf{g} \to \mathsf{Id}_Y$ (Acting like the units of an adjunction)

 C has adjoints if all f has $g_1 + f + g_r$

Let X be an (∞, n) – category $n \geq 2$, define h_2X : $-Obs = X_0$ -Mors $=X_{1,0}$ - 2-Mors $=\pi_0(Map(f,g))$

X has adjoints for 1 morphisms if h_2X has adjoints X

has adjoints for k morphisms if $Map(x, y)$ has adjoints for k-1 morphisms

$Bord_n$ is fully dualizable

(fake) Cobordism Hypothesis

We say a symmetric monoidal (∞, n) -category is fully dualizable if it has duals, and adjoints for all k

Bord_n is fully dualizable
Thus
$$
Fun^{\otimes}(\text{Bord}_n, \mathfrak{C}) \simeq Fun^{\otimes}(\text{Bord}_n, \mathfrak{C}^{\text{fd}})
$$

Moreover, the duals realize $Fun^{\otimes}(Bord_n, \mathfrak{C})$ as an ∞ -groupoid:

$$
\alpha: Z \to Z'
$$

$$
\alpha_M: Z(M) \to Z'(M) \text{ and } \alpha_{\bar{M}}: Z(\bar{M}) \to Z'(\bar{M})
$$

$$
\bar{\alpha}_{\bar{M}}: Z'(M) \to Z'(M)
$$

$$
\text{with } \bar{\alpha}_{\bar{M}} = \alpha_M^{-1}
$$

This leads us to the (fake) cobordism hypothesis:

 $ev_* : Fun^{\otimes} (Bord_n, \mathfrak{C}) \to \mathfrak{C}^{\sim}$

where \mathfrak{C}^{\sim} is the core ∞ -groupoid of a (∞, n) -category

The real cobordism hypothesis is a lot weaker:

$$
ev_*: Fun^{\otimes}(\mathit{Bord}_n^{fr}, \mathfrak{C}) \to \mathfrak{C}^{\sim}
$$

It requires that we have n-framings on the manifolds in $Bord_n$.

Let M^m be a manifold, an n-framing on M is an isomorphism of vector bundles

$$
\mathcal{T}_M\oplus\underline{\mathbb{R}}^{n-m}\cong\underline{\mathbb{R}}^n
$$

Let Bord^{fr}_{n} be the $(\infty,n)-$ category of bordisms with n-framings

This version of the cobordism hypothesis is not very interesting, namely it classifies TQFTs on manifolds with n-framings: barely any manifolds have n-framings.

What's interesting is that it induces an O(n)-action on C∼:

- O(n) acts on n-framings of a manifold M
- $O(n)$ acts on $Bord_n^{fr}$
- O(n) acts on $\textit{Fun}^{\otimes}(\textit{Bord}^{fr}_n, \mathfrak{C}) \simeq \mathfrak{C}^{\sim}$

(X,ζ) -Structures

The (real) Cobordism Hypothesis

an n-framing is a specific case of an (X, ζ) -Structure.

Let X be a topological space, with a rank n vector bundle ζ with an inner product (v,w). An (X, ζ) -structure on a manifold M^m is:

A map $f : M \to X$

An isomorphism of vector bundles

$$
\mathcal{T}_M\oplus\underline{\mathbb{R}}^{n-m}\cong f^*\zeta
$$

Let $Bord_n^{(X,\zeta)}$ be the (∞, n) -category of Bordisms with a (X, ζ) -structure

For $x \in X$, let $F_x = \{R^n \stackrel{\sim}{\to} \zeta_x \text{ orthonormal}\}\.$ F_x carries an O(n) action by pre-composition, Let $\tilde{X} = \coprod_{\mathsf{x}}\mathsf{F}_{\mathsf{x}}$ be the associated principal O(n)-bundle of frames in X.

We then have the following equivalence:

$$
\text{Fun}^{\otimes}(\text{Bord}_n^{(X,\zeta)},\mathfrak{C})\simeq \text{Hom}_{O(n)}(\tilde{X},\mathfrak{C}^{\sim})
$$

Which is induced as follows:

Each $\tilde{x} \in \tilde{X}$ gives an (X, ζ) -structure on the point * (by pullback). The restriction functor $res^{(X,\zeta)}_*$ induces the above equivalence

- Let (X,ζ)
- Write $\tilde{X} = \{(x, f) : f : \mathbb{R}^n \to \zeta_x\}$
- Let $X_0 = \{(x, v) | v \in \zeta_x(v, v) = 1\}$ the sphere bundle
- Let $\zeta_0 = \{(x, v, w) | (x, v) \in X_0, (v, w) = 0\}$
- Let $p: X_0 \to X$ the projection, then

 $\zeta_0 \oplus \mathbb{R} \cong p^*\zeta$

with this equivalence any dim $<$ n manifold with an (X_0, ζ_0) -structure also carries an (X, ζ) -structure. Thus:

$$
Bord_{n-1}^{(X_0,\zeta_0)} \hookrightarrow Bord_n^{(X,\zeta)}
$$

Let $\Omega X = Map_X(*, *)$, inductively define $\Omega^k X$ For $x \in X$ let $S^{\zeta_x} = \{|v| = 1\} \in \Omega^{n-1}$ Bord $_{n-1}^{(X_0,\zeta_0)}$ For $Z: Bord_n^{(X,\zeta)} \to \mathfrak{C}$, restrict to $Z_0: Bord_{n-1}^{(X_0,\zeta_0)} \to \mathfrak{C}$ define $\Phi: X \to \Omega^{n-1} \mathfrak{C}$ by $\Phi(x) = Z_0(S^{\zeta_x})$ for a point $(x, v) \in X_0$ we can decompose S^{ζ_x} as

$$
\emptyset \stackrel{S_{\nu,+}^{\zeta_x}}{\rightarrow} S_{\nu,0}^{\zeta_x} \stackrel{S_{\nu,-}^{\zeta_x}}{\rightarrow} \emptyset
$$

yeilding a composite of morphisms in Ω^{n-1} *C*

 $1 \stackrel{H_{-}(x,v)}{\rightarrow} H_{0}(x,v) \stackrel{H_{+}(x,v)}{\rightarrow} 1$

non-degenerate morphisms

Inductive Idea

-Let $D^{\zeta_x} = \{|v| \leq 1\}$, $D^{\zeta_x} : \emptyset \to S^{\zeta_x}$

$$
\eta_x = Z(D^{\zeta_x}) : 1 \to H_+(x,v) \circ H_-(x,v)
$$

 η_x witnesses $H_-(x, v) \dashv H_+(x, v)$. we say that η_x is non-degerate

Theorem 3.1.8

Let $Z_0 : Bord_{n-1}^{(X_0,\zeta_0)} \to \mathfrak{C}$, TFAE:

- $Z : Bord_{n-1}^{(X,\zeta)} \to \mathfrak{C}$ extending Z_0
- **F** families of non-degenerate n-morphisms $\{\eta_x: 1 \to Z_0(S^{\zeta_x})\}_x$

Letting $(X, \zeta) = (*, \mathbb{R}^n)$

$$
Bord_n^{fr} = Bord_n^{(*, \mathbb{R}^n)}
$$

- Assume the General Cobordism Hypothesis for dimension n-1
- Let $Z: Bord_n^{fr} \to \mathfrak{C}$, Theorem 3.1.8 allows us to reduce to $Z_0: \mathit{Bord}_{n-1}^{(S^{n-1},\zeta_0)}\to \mathfrak{C}$ and a family $\eta_\mathsf{x}:1\to Z_0(S^{n-1})$
- It follows from some highly technical details (p. $54-57$) that this reduces to a functor $Z_-\colon \mathit{Bord}_{n-1}^{fr}\to \mathfrak{C}$
- This proves the Framed Cobordism Hypothesis in dimension n

General Cobordism Hypothesis

We will extend to the general cobordism hypothesis as follows: Let (X, ζ) as before, consider $f : Y \to X \in \mathfrak{Top}/X$, we have two functors:

$$
F(f) = Fun^{\otimes} (Bord_n^{(Y, f^*\zeta)}, \mathfrak{C}) \text{ and}
$$

$$
G(f) = Map_{O(n)}(\tilde{X} \times_X Y, \mathfrak{C})
$$

restriction to the $(Y, f^*\zeta)$ structures on $*$ gives us a natural

$$
\alpha_f : F(f) \to G(f)
$$

- **a** α_f is an equivalence when $f : * \rightarrow X$
- Both F , G send homotopy colimits to homotopy limits
- \blacksquare all CW-complexes are generated by homotopy colimits of \ast
- \bullet α_f is always an equivalence, in particular α_{Id_X}