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Cob1(n)

Cob1(n) is the symmetric monoidal category whose:

Obs: n-1 dim closed manifolds M

Mors: n dim Bordisms B:M→N

Comp: B1 ◦ B0 = B0
�

N B1�
=

�
, 1⊗ = ∅

A dual of an object X ∈ C is an object X̄ with morphisms:

evX : X̄ ⊗ X → 1 and coevX : 1 → X ⊗ X̄

Duals

In Cob1(n) we have the duals:

evM : M̄
�

M → ∅ and coevM : ∅ → M ⊗ M̄
[macaroni picture]

In (Vectk ,⊗, 1 = k) we have evV : V̄ ⊗ V → k by

ev(f , v) = f (v)

when V is finite dimensional we have coevV : k → V ⊗ V̄ by

coev(k) =
n�

kvi ⊗ v i

Fully Dualizable

We say that C is fully dualizable when all of it’s objects have duals:

Cob1(n) is fully dualizable

Vectk is not, but Vect fdk is

Let D be fully dualizable and F ∈ Fun⊗(D,C), then F factors
uniquely as

D → Cfd → C



Classical TQFTs

A TQFT is a SMFunctor

Z : Cob1(n) → Vectk

by the above theorem, this reduces to

Z : Cob1(n) → Vect fdk

The fact that the essential image of Z must lie in the fully
dualizable objects will allow us to reduce the calculation of Z.

Reduction Arguement

Let B : M → N be a bordism

rewrite as B : ∅ → N
�

M̄

That is B : ∅ → ∂B hence Z (B) : k → Z (∂B)

Factor B as M
B0→ L

B0→ N

∂(B0
�

B1) ∼= ∂(B)
�

L̄
�

L

We have the commutative diagram:

k Z (∂B)

Z (∂B0)⊗ Z (∂B1) Z (∂B)⊗ Z (L)⊗ Z (L)∧

Z(B)

Z(B0)⊗Z(B1)

∼
Z(evL)

Allowing us to express Z (B) in terms of Z (B0),Z (B1) and Z (evL)

Classical Cobordism Hypotheses

Coupled with a classification of 0,1,2 manifolds, we get:

ev∗ : Fun⊗(Cob1(1),Vect fdk ) ∼= Vect fdk (as sets)

A 1-dimensional TQFT is classified by Z(*)

and

Fun⊗(Cob1(2),Vect fdk ) ∼= k − FrbAlg

A 2-dim TQFT is classified by Z on:

S1, a ”pair of pants” S1
�

S1 → S1 and a ”cap” S1 → ∅

Reasons to Extend to (∞, n)-categories

Cob(n) should be an n-category:

Classification of n>>2 manifolds is hard

Covariance: Cob1(n) ”Chooses” a time axis

Cob(n) should be an (inf, n)-category

We want to explicitly deal with diffeomorphism

We want to consider TQFT variants such as

Z : Cob(n) → Chaink

i.e. we want to consider homotopy as well



Segal Spaces

Recall: a simplicial set X is the nerve of a category iff the diagram

Xm+n Xm

Xn X0

is a pullback

Likewise a Simplicial Space X : Δop → Top is a Segal Space if

the above diagram is a homotopy pullback Xm+n � Xm ×R
X0

Xn

(inf, 1)-categories

for x , y ∈ X0 let Map(x , y) = {x} ×R
X0

X1 ×R
X0

{y}

define the homotopy category hX :
- Obs = X0

- Mors = π0(Map(x , y))

f ∈ X1 is invertible if [f ] ∈ hX is. Let Z ⊆ X1 be the invertibles.

δ0 : X0 → X1 factors through δ0 : X0 → Z .
We say X is complete if δ0 is a weak equivalence.

An (∞, 1)-category is a complete segal space X

(∞, n)-categories

An n-fold simplicial space is a functor X : (Δop)n → Top.
Let nTop = {X : (Δop)n → Top}.
by currying we get nTop = {X : Δop → (n − 1)Top}

an n-fold simplicial space is a (∞, n)-category if:
1) X satisfies the segal condition
2) X0 is essentially constant
3) Xk are (∞, n − 1)-categories
4) Yk = Xk,0,..,0 is an (∞, 1)− category

Bordn as (∞, 1)-category

Let PreCobVk (n) = {(M �→ V × R, (a0 ≤ ... ≤ ak)}
(with some extra conditions)

[picture of transverse embedding]

PreCobV· (n) has a natural topology making it a segal space, we
can complete it to an (∞, 1)-category Bord1(n):

- Obs: n-1 closed manifolds
- Mors: n Bordisms
- 2-Mors: Diffeomorphisms of Bordisms
- 3-Mors: isotopies of Diffeomorphisms
...



Bordn

Let PreCobVk1,...,kr (n) = {(M �→ V × Rr , (ai0 ≤ ... ≤ aiki )i≤r}
(with some extra conditions)

[picture of multi-transverse embedding]

PreCobV• (n) has a natural topology making it an n-fold segal
space, we can complete it to an (∞, n)-category Bordn:

- Obs: Points
- Mors: 1- Bordisms
...
- n-Mors: n-Bordisms
- (n+1)-Mors: Diffeomorphisms of Bordisms
- (n+1)-Mors: Isotopies
...

Adjoints

Let C be a 2-category. We say f � g if

η : IdX → g ◦ f and � : f ◦ g → IdY
(Acting like the units of an adjunction)

C has adjoints if all f has gl � f � gr

Let X be an (∞, n)−category n ≥ 2, define h2X :
-Obs = X0

-Mors = X1,0

- 2-Mors = π0(Map(f , g))

X has adjoints for 1 morphisms if h2X has adjoints X

has adjoints for k morphisms if Map(x , y) has adjoints for k-1
morphisms

Bordn is fully dualizable

We say a symmetric monoidal (∞, n)-category is fully dualizable if
it has duals, and adjoints for all k

Bordn is fully dualizable
Thus Fun⊗(Bordn,C) � Fun⊗(Bordn,Cfd)

Moreover, the duals realize Fun⊗(Bordn,C) as an ∞-groupoid:

α : Z → Z �

αM : Z (M) → Z �(M) and αM̄ : Z (M̄) → Z �(M̄)

ᾱM̄ : Z �(M) → Z �(M)

with ᾱM̄ = α−1
M

(fake) Cobordism Hypothesis

This leads us to the (fake) cobordism hypothesis:

ev∗ : Fun⊗(Bordn,C) → C∼

where C∼ is the core ∞-groupoid of a (∞, n)−category



Framings

The real cobordism hypothesis is a lot weaker:

ev∗ : Fun⊗(Bord fr
n ,C) → C∼

It requires that we have n-framings on the manifolds in Bordn.

Let Mm be a manifold, an n-framing on M is an isomorphism of
vector bundles

TM ⊕ Rn−m ∼= Rn

Let Bord fr
n be the (∞, n)− category of bordisms with n-framings

O(n)-action

This version of the cobordism hypothesis is not very interesting,
namely it classifies TQFTs on manifolds with n-framings:
barely any manifolds have n-framings.

What’s interesting is that it induces an O(n)-action on C∼:
- O(n) acts on n-framings of a manifold M
- O(n) acts on Bord fr

n

- O(n) acts on Fun⊗(Bord fr
n ,C) � C∼

(X , ζ)-Structures

an n-framing is a specific case of an (X , ζ)-Structure.

Let X be a topological space, with a rank n vector bundle ζ with
an inner product (v,w). An (X , ζ)-structure on a manifold Mm is:

A map f : M → X

An isomorphism of vector bundles

TM ⊕ Rn−m ∼= f ∗ζ

Let Bord
(X ,ζ)
n be the (∞, n)-category of Bordisms with a

(X , ζ)-structure

The (real) Cobordism Hypothesis

For x ∈ X , let Fx = {Rn ∼→ ζx orthonormal}. Fx carries an O(n)
action by pre-composition, Let X̃ =

�
x Fx be the

associated principal O(n)-bundle of frames in X.

We then have the following equivalence:

Fun⊗(Bord (X ,ζ)
n ,C) � HomO(n)(X̃ ,C∼)

Which is induced as follows:
Each x̃ ∈ X̃ gives an (X , ζ)-structure on the point * (by pullback).

The restriction functor res
(X ,ζ)
∗ induces the above equivalence



Sketch of the proof: Constructions

- Let (X , ζ)
- Write X̃ = {(x , f ) : f : Rn → ζx}
- Let X0 = {(x , v)|v ∈ ζx(v , v) = 1} the sphere bundle
- Let ζO = {(x , v ,w)|(x , v) ∈ X0, (v ,w) = 0}
- Let p : X0 → X the projection, then

ζ0 ⊕ R ∼= p∗ζ

with this equivalence any dim < n manifold with an
(X0, ζ0)-structure also carries an (X , ζ)-structure. Thus:

Bord
(X0,ζ0)
n−1 �→ Bord

(X ,ζ)
n

Sketch of the proof: Extension

Let ΩX = MapX (∗, ∗), inductively define ΩkX

For x ∈ X let Sζx = {|v | = 1} ∈ Ωn−1Bord
(X0,ζ0)
n−1

For Z : Bord
(X ,ζ)
n → C, restrict to Z0 : Bord

(X0,ζ0)
n−1 → C

define Φ : X → Ωn−1C by Φ(x) = Z0(S
ζx )

for a point (x , v) ∈ X0 we can decompose Sζx as

∅
Sζx
v,+→ Sζx

v ,0

Sζx
v,−→ ∅

yeilding a composite of morphisms in Ωn−1C

1
H−(x ,v)→ H0(x , v)

H+(x ,v)→ 1

non-degenerate morphisms

-Let Dζx = {|v | ≤ 1}, Dζx : ∅ → Sζx

ηx = Z (Dζx ) : 1 → H+(x , v) ◦ H−(x , v)

ηx witnesses H−(x , v) � H+(x , v). we say that ηx is non-degerate

Theorem 3.1.8

Let Z0 : Bord
(X0,ζ0)
n−1 → C, TFAE:

Z : Bord
(X ,ζ)
n−1 → C extending Z0

families of non-degenerate n-morphisms {ηx : 1 → Z0(S
ζx )}X

Inductive Idea

Letting (X , ζ) = (∗,Rn)

Bord fr
n = Bord

(∗,Rn)
n

Assume the General Cobordism Hypothesis for dimension n-1

Let Z : Bord fr
n → C, Theorem 3.1.8 allows us to reduce to

Z0 : Bord
(Sn−1,ζ0)
n−1 → C and a family ηx : 1 → Z0(S

n−1)

It follows from some highly technical details (p. 54-57) that
this reduces to a functor Z− : Bord fr

n−1 → C

This proves the Framed Cobordism Hypothesis in dimension n



General Cobordism Hypothesis

We will extend to the general cobordism hypothesis as follows:
Let (X , ζ) as before, consider f : Y → X ∈ Top/X , we have two
functors:

F (f ) = Fun⊗(Bord (Y ,f ∗ζ)
n ,C) and

G (f ) = MapO(n)(X̃ ×X Y ,C)

restriction to the (Y , f ∗ζ) structures on * gives us a natural

αf : F (f ) → G (f )

αf is an equivalence when f : ∗ → X

Both F ,G send homotopy colimits to homotopy limits

all CW-complexes are generated by homotopy colimits of *

αf is always an equivalence, in particular αIdX


