$Cob_1(n)$

Extended Cobordism Hypothesis

A survey of an overview

Noah Chrein

December 10, 2019

 $Cob_1(n)$ is the symmetric monoidal category whose:

- Obs: n-1 dim closed manifolds M
- Mors: n dim Bordisms B:M→N
- Comp: $B_1 \circ B_0 = B_0 \coprod_N B_1$
- $\blacksquare \bigotimes = \coprod$, $1_{\otimes} = \emptyset$

A <u>dual</u> of an object $X \in \mathfrak{C}$ is an object \overline{X} with morphisms:

 $\mathit{ev}_X: ar{X} \otimes X
ightarrow 1$ and $\mathit{coev}_X: 1
ightarrow X \otimes ar{X}$

Fully Dualizable

In $Cob_1(n)$ we have the duals:

Duals

 $ev_M : \overline{M} \coprod M \to \emptyset$ and $coev_M : \emptyset \to M \otimes \overline{M}$ [macaroni picture]

In $(\textit{Vect}_k, \otimes, 1 = k)$ we have $ev_V : \bar{V} \otimes V \to k$ by

$$ev(f, v) = f(v)$$

when V is finite dimensional we have $coev_V: k \to V \otimes \bar{V}$ by

$$coev(k) = \sum_{i=1}^{n} kv_i \otimes v^i$$

We say that $\mathfrak C$ is fully dualizable when all of it's objects have duals:

- $Cob_1(n)$ is fully dualizable
- Vect_k is not, but $Vect_k^{fd}$ is

Let \mathfrak{D} be fully dualizable and $F \in Fun^{\otimes}(\mathfrak{D}, \mathfrak{C})$, then F factors uniquely as

$$\mathfrak{D} \to \mathfrak{C}^{\mathit{fd}} \to \mathfrak{C}$$

A <u>TQFT</u> is a SMFunctor

$$Z: Cob_1(n) \rightarrow Vect_k$$

by the above theorem, this reduces to

$$Z: \mathit{Cob}_1(n)
ightarrow \mathit{Vect}^{\mathit{fd}}_k$$

The fact that the essential image of Z must lie in the fully dualizable objects will allow us to reduce the calculation of Z.

- Let $B: M \to N$ be a bordism
- rewrite as $B : \emptyset \to N \coprod \overline{M}$
- That is $B: \emptyset \to \partial B$ hence $Z(B): k \to Z(\partial B)$
- Factor B as $M \xrightarrow{B_0} L \xrightarrow{B_0} N$
- $\partial(B_0 \coprod B_1) \cong \partial(B) \coprod \bar{L} \coprod L$

We have the commutative diagram:

$$k \xrightarrow{Z(B)} Z(\partial B)$$

$$\downarrow^{Z(B_0)\otimes Z(B_1)} Z(ev_L)^{\uparrow}$$

$$Z(\partial B_0) \otimes Z(\partial B_1) \xrightarrow{\sim} Z(\partial B) \otimes Z(L) \otimes Z(L)^{\land}$$

Allowing us to express Z(B) in terms of $Z(B_0), Z(B_1)$ and $Z(ev_L)$

Classical Cobordism Hypotheses

Reasons to Extend to (∞, n) -categories

Coupled with a classification of 0,1,2 manifolds, we get:

$$ev_*: Fun^{\otimes}(Cob_1(1), Vect_k^{fd}) \cong Vect_k^{fd}$$
 (as sets)

A 1-dimensional TQFT is classified by Z(*)

and

$${\sf Fun}^{\otimes}({\sf Cob}_1(2),{\sf Vect}^{{\it fd}}_k)\cong k-{\sf FrbAlg}$$

A 2-dim TQFT is classified by Z on:

$$S^1$$
, a "pair of pants" $S^1 \coprod S^1 o S^1$ and a "cap" $S^1 o \emptyset$

Cob(n) should be an n-category:

- \blacksquare Classification of n>>2 manifolds is hard
- Covariance: $Cob_1(n)$ "Chooses" a time axis

Cob(n) should be an (inf, n)-category

- We want to explicitly deal with diffeomorphism
- We want to consider TQFT variants such as $Z : Cob(n) \rightarrow \mathfrak{C}hain_k$

i.e. we want to consider homotopy as well

Recall: a simplicial set X is the nerve of a category iff the diagram

Likewise a **Simplicial Space** $X : \Delta^{op} \to \mathfrak{Top}$ is a Segal Space if the above diagram is a **homotopy pullback** $X_{m+n} \simeq X_m \times_{X_0}^R X_n$ for $x, y \in X_0$ let $Map(x, y) = \{x\} \times_{X_0}^R X_1 \times_{X_0}^R \{y\}$

define the homotopy category hX:

- Obs =
$$X_0$$

- Mors = $\pi_0(Map(x, y))$

 $f \in X_1$ is invertible if $[f] \in hX$ is. Let $Z \subseteq X_1$ be the invertibles.

 $\delta_0: X_0 \to X_1$ factors through $\delta_0: X_0 \to Z$. We say X is complete if δ_0 is a weak equivalence.

An $(\infty, 1)$ -category is a complete segal space X

 (∞, n) -categories

An n-fold simplicial space is a functor $X : (\Delta^{op})^n \to \mathfrak{Top}$. Let $n\mathfrak{Top} = \{X : (\Delta^{op})^n \to \mathfrak{Top}\}.$ by currying we get $n\mathfrak{Top} = \{X : \Delta^{op} \to (n-1)\mathfrak{Top}\}$

an n-fold simplicial space is a (∞, n) -category if: 1) X satisfies the segal condition 2) X_0 is essentially constant 3) X_k are $(\infty, n-1)$ -categories

4) $Y_k = X_{k,0,\dots,0}$ is an $(\infty, 1)$ – category

$Bord_n$ as $(\infty, 1)$ -category

Let $PreCob_k^V(n) = \{(M \hookrightarrow V \times \mathbb{R}, (a_0 \le ... \le a_k))\}$ (with some extra conditions)

[picture of transverse embedding]

 $PreCob^{V}(n)$ has a natural topology making it a segal space, we can complete it to an $(\infty, 1)$ -category $Bord_1(n)$:

- Obs: n-1 closed manifolds
- Mors: n Bordisms
- 2-Mors: Diffeomorphisms of Bordisms
- 3-Mors: isotopies of Diffeomorphisms

. . .

Bord_n

Adjoints

Let $PreCob_{k_1,...,k_r}^V(n) = \{(M \hookrightarrow V \times \mathbb{R}^r, (a_0^i \le ... \le a_{k_i}^i)_{i \le r}\}$ (with some extra conditions)

[picture of multi-transverse embedding]

 $PreCob_{\bullet}^{V}(n)$ has a natural topology making it an n-fold segal space, we can complete it to an (∞, n) -category $Bord_n$:

- Obs: Points

- Mors: 1- Bordisms

- n-Mors: n-Bordisms

...

- (n+1)-Mors: Diffeomorphisms of Bordisms
- (n+1)-Mors: Isotopies

Let \mathfrak{C} be a 2-category. We say $\underline{f \dashv g}$ if

 $\eta: Id_X \to g \circ f \text{ and } \epsilon: f \circ g \to Id_Y$ (Acting like the units of an adjunction)

 \mathfrak{C} has adjoints if all f has $g_l \dashv f \dashv g_r$

Let X be an (∞, n) -category $n \ge 2$, define h_2X : -Obs = X₀ -Mors = X_{1,0} - 2-Mors = $\pi_0(Map(f, g))$

X has adjoints for 1 morphisms if h_2X has adjoints X

has adjoints for k morphisms if Map(x, y) has adjoints for k-1 morphisms

Bord_n is fully dualizable

(fake) Cobordism Hypothesis

We say a symmetric monoidal (∞ , n)-category is <u>fully dualizable</u> if it has duals, and adjoints for all k

$$Bord_n$$
 is fully dualizable
Thus $Fun^{\otimes}(Bord_n, \mathfrak{C}) \simeq Fun^{\otimes}(Bord_n, \mathfrak{C}^{fd})$

Moreover, the duals realize $Fun^{\otimes}(Bord_n, \mathfrak{C})$ as an ∞ -groupoid:

$$\alpha: Z \to Z'$$

$$\alpha_M: Z(M) \to Z'(M) \text{ and } \alpha_{\bar{M}}: Z(\bar{M}) \to Z'(\bar{M})$$

$$\bar{\alpha}_{\bar{M}}: Z'(M) \to Z'(M)$$
with $\bar{\alpha}_{\bar{M}} = \alpha_M^{-1}$

This leads us to the (fake) cobordism hypothesis:

 $ev_*: \mathit{Fun}^{\otimes}(\mathit{Bord}_n, \mathfrak{C})
ightarrow \mathfrak{C}^{\sim}$

where \mathfrak{C}^{\sim} is the core ∞ -groupoid of a (∞, n) -category

The real cobordism hypothesis is a lot weaker:

$$\mathit{ev}_*: \mathit{Fun}^{\otimes}(\mathit{Bord}^{\mathit{fr}}_n, \mathfrak{C})
ightarrow \mathfrak{C}^{\widehat{}}$$

It requires that we have n-framings on the manifolds in $Bord_n$.

Let M^m be a manifold, an <u>n-framing</u> on M is an isomorphism of vector bundles

$$T_M \oplus \underline{\mathbb{R}}^{n-m} \cong \underline{\mathbb{R}}^n$$

Let $Bord_n^{fr}$ be the $(\infty, n) - category$ of bordisms with n-framings

This version of the cobordism hypothesis is not very interesting, namely it classifies TQFTs on manifolds with n-framings: **barely any manifolds have n-framings**.

What's interesting is that it induces an O(n)-action on \mathfrak{C}^{\sim} :

- O(n) acts on n-framings of a manifold M
- O(n) acts on $Bord_n^{fr}$
- O(n) acts on $Fun^{\otimes}(Bord_n^{fr}, \mathfrak{C}) \simeq \mathfrak{C}^{\sim}$

(X, ζ) -Structures

The (real) Cobordism Hypothesis

an n-framing is a specific case of an (X, ζ) -Structure.

Let X be a topological space, with a rank n vector bundle ζ with an inner product (v,w). An (X, ζ)-structure on a manifold M^m is:

- A map $f: M \to X$
- An isomorphism of vector bundles

$$T_M \oplus \underline{\mathbb{R}}^{n-m} \cong f^* \zeta$$

Let $Bord_n^{(X,\zeta)}$ be the (∞, n) -category of Bordisms with a (X,ζ) -structure

For $x \in X$, let $F_x = \{R^n \xrightarrow{\sim} \zeta_x \text{ orthonormal}\}$. F_x carries an O(n) action by pre-composition, Let $\tilde{X} = \coprod_x F_x$ be the associated principal O(n)-bundle of frames in X.

We then have the following equivalence:

$$\operatorname{\mathsf{Fun}}^{\otimes}(\operatorname{\mathsf{Bord}}^{(X,\zeta)}_n,{\mathfrak C})\simeq\operatorname{\mathsf{Hom}}_{O(n)}(\widetilde{X},{\mathfrak C}^\sim)$$

Which is induced as follows: Each $\tilde{x} \in \tilde{X}$ gives an (X, ζ) -structure on the point * (by pullback). The restriction functor $res_*^{(X,\zeta)}$ induces the above equivalence

- Let (X, ζ)
- Write $ilde{X} = \{(x,f): f: \mathbb{R}^n o \zeta_x\}$
- Let $X_0 = \{(x, v) | v \in \zeta_x(v, v) = 1\}$ the sphere bundle
- Let $\zeta_O = \{(x, v, w) | (x, v) \in X_0, (v, w) = 0\}$
- Let $p: X_0 \to X$ the projection, then

 $\zeta_0 \oplus \underline{\mathbb{R}} \cong p^* \zeta$

with this equivalence any dim < n manifold with an (X_0, ζ_0) -structure also carries an (X, ζ) -structure. Thus:

$$Bord_{n-1}^{(X_0,\zeta_0)} \hookrightarrow Bord_n^{(X,\zeta)}$$

• Let $\Omega X = Map_X(*,*)$, inductively define $\Omega^k X$ • For $x \in X$ let $S^{\zeta_x} = \{|v| = 1\} \in \Omega^{n-1}Bord_{n-1}^{(X_0,\zeta_0)}$ • For $Z : Bord_n^{(X,\zeta)} \to \mathfrak{C}$, restrict to $Z_0 : Bord_{n-1}^{(X_0,\zeta_0)} \to \mathfrak{C}$ • define $\Phi : X \to \Omega^{n-1}\mathfrak{C}$ by $\Phi(x) = Z_0(S^{\zeta_x})$ for a point $(x, v) \in X_0$ we can decompose S^{ζ_x} as

$$\emptyset \stackrel{S_{\mathbf{v},+}^{\zeta_{\mathbf{x}}}}{\to} S_{\mathbf{v},0}^{\zeta_{\mathbf{x}}} \stackrel{S_{\mathbf{v},-}^{\zeta_{\mathbf{x}}}}{\to} \emptyset$$

yeilding a composite of morphisms in $\Omega^{n-1}\mathfrak{C}$

 $1 \stackrel{H_{-}(x,v)}{
ightarrow} H_{0}(x,v) \stackrel{H_{+}(x,v)}{
ightarrow} 1$

non-degenerate morphisms

Inductive Idea

-Let $D^{\zeta_x} = \{ |v| < 1 \}, D^{\zeta_x} : \emptyset \to S^{\zeta_x}$

$$\eta_x = Z(D^{\zeta_x}) : 1 \to H_+(x, v) \circ H_-(x, v)$$

 η_x witnesses $H_-(x, v) \dashv H_+(x, v)$. we say that η_x is non-degerate

Theorem 3.1.8

Let $Z_0: Bord_{n-1}^{(X_0,\zeta_0)} \to \mathfrak{C}$, TFAE:

- $Z: Bord_{n-1}^{(X,\zeta)} \to \mathfrak{C} \text{ extending } Z_0$
- families of non-degenerate n-morphisms $\{\eta_x : 1 \to Z_0(S^{\zeta_x})\}_X$

Letting $(X, \zeta) = (*, \mathbb{R}^n)$

$$Bord_n^{fr} = Bord_n^{(*,\underline{\mathbb{R}}^n)}$$

- Assume the General Cobordism Hypothesis for dimension n-1
- Let $Z : Bord_n^{fr} \to \mathfrak{C}$, Theorem 3.1.8 allows us to reduce to $Z_0 : Bord_{n-1}^{(S^{n-1},\zeta_0)} \to \mathfrak{C}$ and a family $\eta_x : 1 \to Z_0(S^{n-1})$
- It follows from some highly technical details (p. 54-57) that this reduces to a functor Z_- : $Bord_{n-1}^{fr} \to \mathfrak{C}$
- This proves the Framed Cobordism Hypothesis in dimension n

General Cobordism Hypothesis

We will extend to the general cobordism hypothesis as follows: Let (X, ζ) as before, consider $f : Y \to X \in \mathfrak{Top}/X$, we have two functors:

$$egin{aligned} \mathcal{F}(f) &= \mathcal{F}\!\mathit{un}^\otimes(\mathcal{B}\!\mathit{ord}_n^{(Y,f^*\zeta)},\mathfrak{C}) ext{ and } \ \mathcal{G}(f) &= \mathcal{M}\!\mathit{ap}_{\mathcal{O}(n)}(ilde{X} imes_XY,\mathfrak{C}) \end{aligned}$$

restriction to the $(Y, f^*\zeta)$ structures on * gives us a natural

$$\alpha_f: F(f) \to G(f)$$

- α_f is an equivalence when $f : * \to X$
- Both *F*, *G* send homotopy colimits to homotopy limits
- all CW-complexes are generated by homotopy colimits of *
- α_f is always an equivalence, in particular α_{Id_X}